Linear Regression in R

First of all, I had installed RStudio, this is the link for download:

https://leandro26.webnode.com/products/download-r-for-windows/

 

Once we have installed RStudio, load the script below:

 

 

--===============================================

--// R script

--===============================================

 

# Linear Regression predicts linear relationship between two variables
 
# Set path to Desktop
setwd("~/Desktop") 
 
download.file(url = 'https://raw.githubusercontent.com/mGalarnyk/Python_Tutorials/master/Python_Basics/Linear_Regression/linear.csv'
              , destfile = 'linear.csv')
rawData=read.csv("linear.csv", header=T)
 
# Show first n entries of data.frame, notice NA values
head(rawData, 10)
 
linModel <- lm(y~x, data = rawData)
 
# Show attributes of linModel
attributes(linModel) 
 
# To show what happens with na.action, "omit" since data has NA
linModel$na.action
 
# Show coefficients of model
linModel$coefficients
 
# Predicting New Value based on our model
predict(linModel, data.frame(x = 3))
 
plot(y ~ x, data = rawData,
     xlab = "This labels the x axis",
     ylab = "This labels the y axis",
     main = "Scatter Plot"
)
 
abline(linModel, col = "red", lwd = 3)
 
 
--=================================================
 
R is very simple to execute and work on it, you need to select the command or execute all.
 
On the line (but execute all the commands before as well):
 
 
plot(y ~ x, data = rawData,
     xlab = "This labels the x axis",
     ylab = "This labels the y axis",
     main = "Scatter Plot"
)
 
You can see this output - Scatter Plot chart: 
 
 
 
 
Also, you can include a trend line by this code:
 
abline(linModel, col = "red", lwd = 3)